An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum
نویسندگان
چکیده
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.
منابع مشابه
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by...
متن کاملBroadband MVDR Beamformer Applying PSO
In this paper, a broadband MVDR(minimum variance distortionless response) beamforming method based on time-domain (TMVDR) is presented. Using TMVDR beamformer, stable sample matrix estimation could be obtained in short time period. To obtain the stable optimum solution of TMVDR, a numerical searching method optimized by PSO algorithm with constrain condition is introduced. Out-sea experiment sh...
متن کاملMinimum Variance Distortionless Response Beamforming for Tumor Segmentation in MRI 49 Minimum Variance Distortionless Response Beamforming for Tumor Segmentation in MRI
Image classification it generally requires a priori knowledge about the objects to be classified. In this paper, we present a new method to segment tumor in multispectral magnetic resonance (MR) images of the human brain. The proposed approach, called Minimum Variance Distortionless Response beamforming (MVDR) was introduced in [15] where only the knowledge of the desired signature to be classi...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کامل